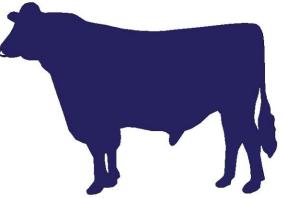
Heritability and impact of genomics in dairy cattle

George R. Wiggans¹ and John B. Cole²

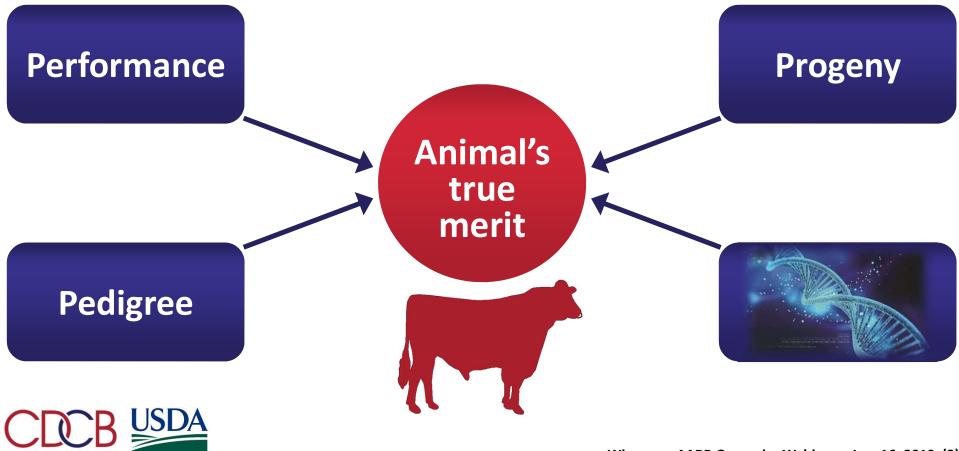
¹ Council on Dairy Cattle Breeding, Bowie, Maryland, USA

² Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, USA



United States Department of Agriculture

Genetic improvement


- Driven by genetic evaluation program
- Yield, fitness, type, and calving traits evaluated
- Widespread use of AI sires
- Intense selection on bulls used in AI
 - Young bulls with genomic evaluations
 - Progeny-tested bulls with daughter records

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (2)

Adding DNA to the prediction

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (3)

Dairy cattle selection before genomics

• Slow!

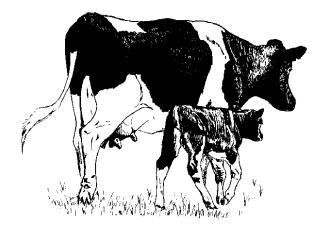
- Progeny test for production took 3–4 years from insemination
- Bull at least 5 years old before first evaluation available

• Expensive!

- Progeny testing cost \$25,000-\$50,000 per bull
- Only 1 in 8–10 bulls graduated from progeny test
- At least \$200,000 invested in each active bull
- Average active bulls cost about \$350,000-\$400,000

How do we use genomics

- Identify DNA sequences associated with production traits and disease resistance
- Animals can be evaluated as soon as DNA can be obtained
- Best animals to be parents can now be determined earlier and more accurately



Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (5)

Use of genomic evaluations for AI

- Determine which young bulls to bring into AI
- Use to select mating sires
- Pick bull dams
- Market semen from young bulls

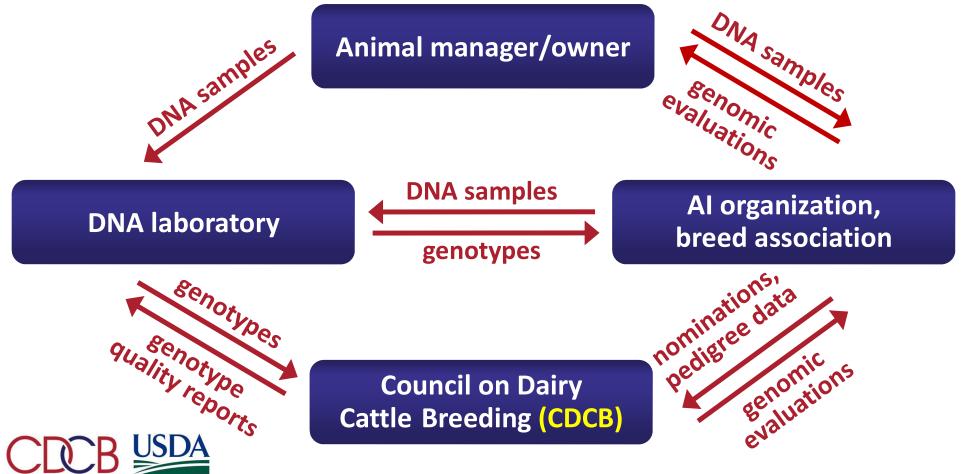
Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (6)

Highlights of U.S. system

- Nearly 700,000 animals genotyped in 2018
- 69% of AI breedings to genomic bulls
- Genomic relationship between genotyped cows and marketed bulls available to avoid matings giving high inbreeding
- Evaluations on new animals released weekly

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (7)

U.S. dairy genomics history


•	Dairy DNA repository (Canada, U.S.)	1992
•	Cattle genome sequenced	2004
•	Illumina 50K SNP BeadChip	2007
•	Official genomic evaluations (Holstein, Jersey, Brown Swiss)	2009
•	High-reliability, low-density chip	2011
•	Genomic evaluations transferred from USDA to CDCB	2013

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (8)

Genomic data flow

COUNCIL ON DAIRY CATTLE BREEF

Wiggans - AABP Genomics Webinar - Jan. 16, 2019 (9)

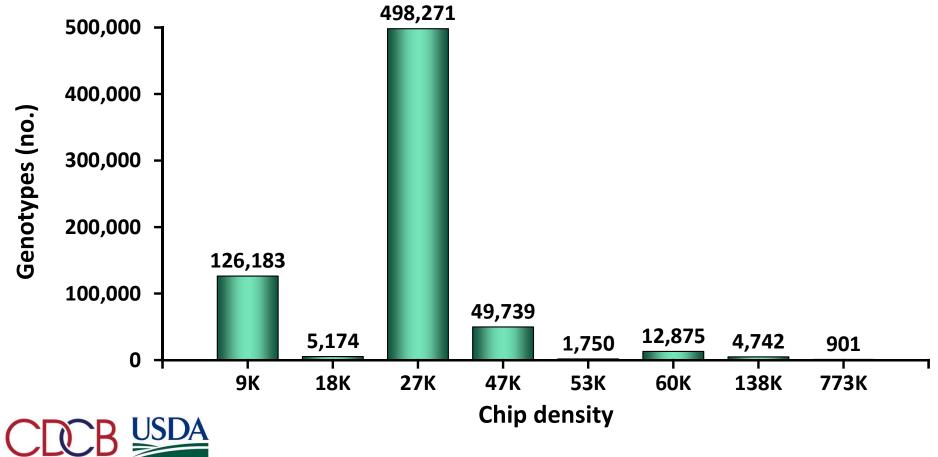
DNA Source

Samples sent to genotyping labs in 2018

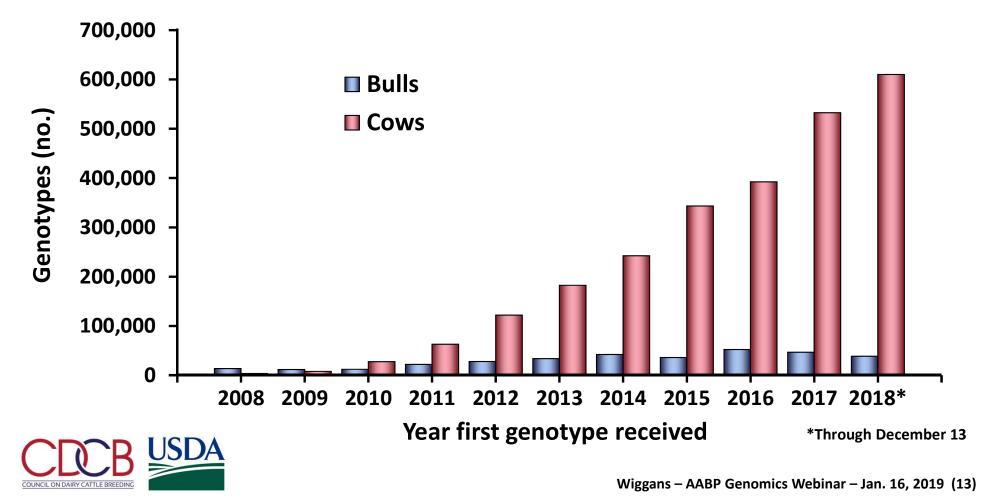
Source	Samples (no.)	Samples (%)
Blood	14,656	2
Hair	102,229	14
Nasal swab	656	<1
Semen	319	<1
Tissue	579,255	81
Unknown	17,048	2

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (10)

Laboratory quality control


- Each SNP evaluated for
 - Call rate
 - Portion heterozygous
 - Parent-progeny conflicts

- ONTROY OUALITY QUALITY CONTRO
- Clustering investigated if SNP exceeds limits
- Number of failing SNPs indicates quality of submission
- PASS/FAIL report on 7 conditions sent to labs


Genotype counts by chip density (2018)

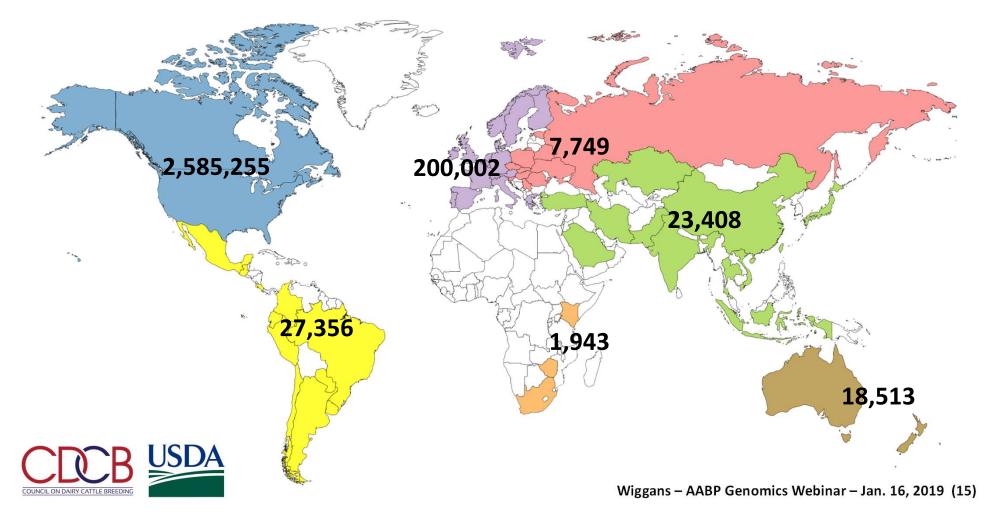
COUNCIL ON DAIRY CATTLE BREEDING

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (12)

Usable genotype counts by animal sex

International genotype exchanges

Country exchanges with U.S.	Bree
Canada	All
United Kingdom, Italy	Hols
All Europe via Interbull	Brov
Denmark	Jerse
United Kingdom (one time)	Guei
Japan, Switzerland, Germany	Hols


reed	Sex	Since
11	Both	2009
olstein	Bulls	2011
rown Swiss	Bulls	2012
ersey	Bulls	2014
uernsey	Both	2014
olstein	Bulls	2016

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (14)

Genotyped animals in database by region (2018)

Validation of parents

- Around 3 million animals genotyped in U.S. system
- Portion of parents validated
 - 97% of sires
 - 39% of dams
- Each genotype compared with all others to discover identical genotypes and parent-progeny relationships
- Animals with incorrect sire or dam excluded from evaluation

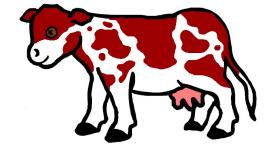
Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (16)

Parentage validation and discovery

- Parent-progeny conflicts detected
 - Reported to breeds and requesters
 - Correct sire usually detected
- Maternal grandsire (MGS) checked
 - Less certain than parentage checking

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (17)

Imputation


- Based on splitting genotype into individual chromosomes (maternal and paternal contributions)
- Missing SNPs assigned by observing SNPs in ancestors and descendants
- Enables use of lower cost/fewer SNP chips
- Genotypes from all chips merged by imputing SNPs not present

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (18)

Gene tests (imputed and actual)

- Holstein
 - Bovine leucocyte adhesion deficiency (BLAD)
 - Complex vertebral malformation (CVM)
 - Deficiency of uridine monophosphate synthase (DUMPS)
 - Syndactyly (mulefoot)
 - Cholesterol deficiency
 - Red coat color
- Brown Swiss
 - Weaver Syndrome
 - Spinal dismyelination (SDM)
 - Spinal muscular atrophy (SMA)
- Polledness (Holstein, Jersey, Brown Swiss)

Haplotypes affecting fertility

- Rapid discovery of new recessive defects
 - Large numbers of genotyped animals
 - Affordable DNA sequencing
- Determination of haplotype location
 - Significant number of homozygous animals expected, but none observed
 - Narrow suspect region with fine mapping
 - Use sequence data to find causative mutation

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (20)

Haplotypes affecting fertility

_ _ _ _ _ _

		ARS-UCD	_	
	Chromo-	location	Current carrier	
Name ¹	some ²	(Mbp) ³	frequency (%)	Earliest known genotyped ancestor
HH1	5	62.8*	2.6	Pawnee Farm Arlinda Chief
HH2	1	93.5-95.6	2.4	Willowholme Mark Anthony
HH3	8	93.8*	5.3	Glendell Arlinda Chief, Gray View Skyliner
HH4	1	2.0*	0.5	Besne Buck
HH5	9	91.8-91.9	4.8	Thornlea Texal Supreme
HH6	16	29.0-29.1	0.9	Gray View Skyliner
JH1	15	15.4*	18.4	Observer Chocolate Soldier
BH2	19	10.8*	13.3	Rancho Rustic My Design
AH1	17	63.7*	22.3	Selwood Betty's Commander
AH2	3	51.1	13.3	Oak-Ridge Flashy Kellogg

¹BH1 and JH2 discontinued ²Bos taurus (BTA) ³Mbp = megabase pairs; * = causative mutation known

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (21)

Detection of chromosomal abnormalities

- Where parent and progeny have more conflicting SNPs than allowed for a true parent-progeny relationship, location of conflicts checked
- If conflicts concentrated on a single chromosome, parentprogeny relationship accepted
 - Large deletion animal homozygous in the region
 - Uniparental disomy heterozygous SNPs in the region
 - 137 cases discovered so far

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (22)

Dairy Calf DNA BioBank

- Collect DNA and phenotype information from calves affected with genetic disorders, and their relatives
- Beta version of website
 - https://aipl.arsusda.gov/BioBank/
- If patterns are observed (e.g., many problems in one family), DNA is available for sequencing to identify causal change in genome and develop a diagnostic test
- To make a report, contact john.cole@ars.usda.gov

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (23)

Validation of grandsires

- If parent not genotyped or not confirmed, grandsire checked
- Grandsire declared unlikely if animal and grandsire have more opposite homozygotes than threshold % (declines as possible comparisons increase)
- Possible grandsires suggested if has low percentage of conflicts and birth date reasonable
- Animals with unlikely grandsires excluded from evaluation

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (24)

Use haplotypes for MGS discovery

- Include new animals with unknown or unlikely MGS in weekly evaluation calculations (confirmed sire required)
- For genotypes not qualifying for evaluation, blank conflicting pedigree and suppress release of evaluation
- Continue use of 1 SNP at-a-time comparison for PGS

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (25)

Heritability

- Proportion of trait variation that results from genetics
- Measured from 0 to 100%
- Genetic improvement related to heritability
 - Selection on traits with high heritability
 → Faster genetic progress
 - Selection on traits with low heritability
 Slower or minimal genetic progress

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (26)

Heritabilities used in U.S. genetic evaluation

Trait	Heritability
Yield (milk, fat, protein)	15-29%
Conformation (type, ~17 traits)	8–51%
Longevity (productive life, cow livability)	1.3-8%
Somatic cell score <mark>(mastitis resistance)</mark>	12%
Daughter pregnancy rate	1.4%
Heifer conception rate	1%
Cow conception rate	1.6%
Service sire (direct) calving ease	8.6%
Daughter (maternal) calving ease	4.8%
Service sire (direct) stillbirth rate	0.8%
Daughter (maternal) stillbirth rate	2.1%
Gestation length (heifers, cows)	44–48%
Age at first calving (early maturity)	2.7%
Health	0.6–3.1%
/	· · · · · · · · · · · · · · · · · · ·

(hypocalcemia, displaced abomasum, ketosis, mastitis, metritis, retained placenta)

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (27)

Dairy cattle traits evaluated by USDA & CDCB

Year Trait

- 1926 Milk & fat yields
- 1977 Protein yield (& solids-not-fat)
- 1978 Conformation (type)
- **1994** Productive life, somatic cell score (mastitis resistance)
- 2000 Calving ease (Iowa State University, 1978–99)
- 2003 Daughter pregnancy rate
- 2006 Stillbirth rate, bull conception rate (ERCR, DRMS, Raleigh, NC, 1986–2005), milking speed
- 2009 Cow and heifer conception rates, genomic evaluation
- 2012 Mobility, calving-to-insemination interval
- 2016 Gestation length
- 2017 Cow livability
- 2018 Health traits (milk fever, displaced abomasum, ketosis, mastitis, metritis, retained placenta)

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (28)

Evaluation of new traits

- Age at 1st calving To be added in 2019
 - To be reported as Early Calving
 - Higher values mean earlier calving
- Feed efficiency Under development

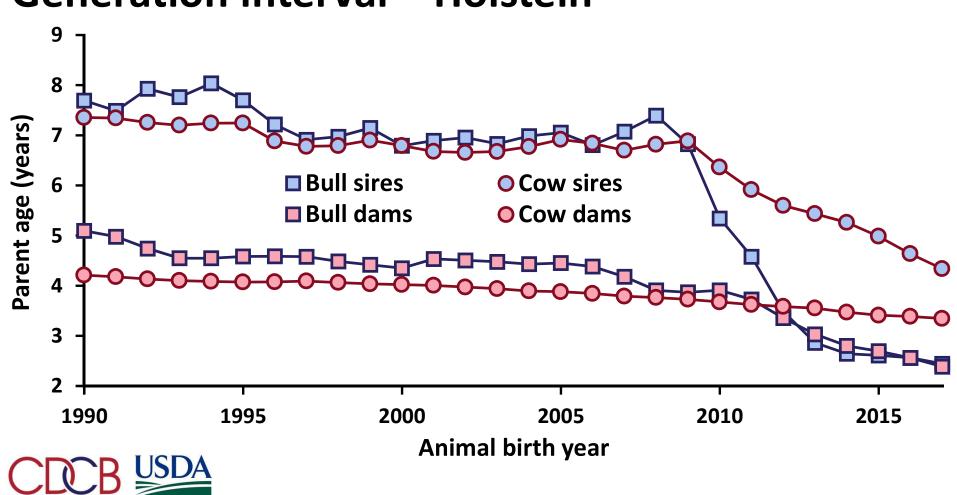
Recent and planned changes

- Increase from 60,000 to 80,000 SNPs used in evaluation – December 2018
- Evaluation of crossbreds by blending purebred SNP effects – planned for April 2019

Changes Ahead by Nick Youngson CC BY-SA 3.0 Alpha Stock Images

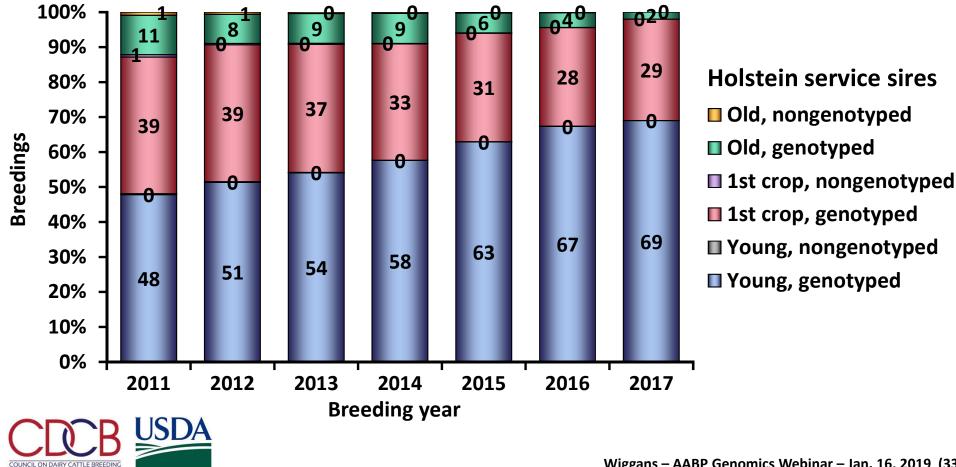
Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (30)

Release of evaluations


• Download from CDCB FTP site with separate files for each nominator

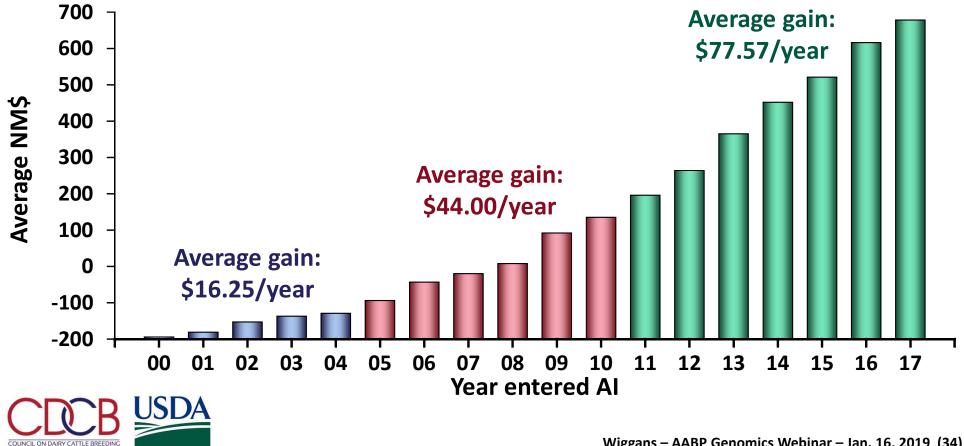
- Weekly release of evaluations of new animals
- Monthly release for females and bulls not marketed
- All genomic evaluations updated 3 times each year with traditional evaluations

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (31)



Generation interval – Holstein

COUNCIL ON DAIRY CATTLE BREEDIN

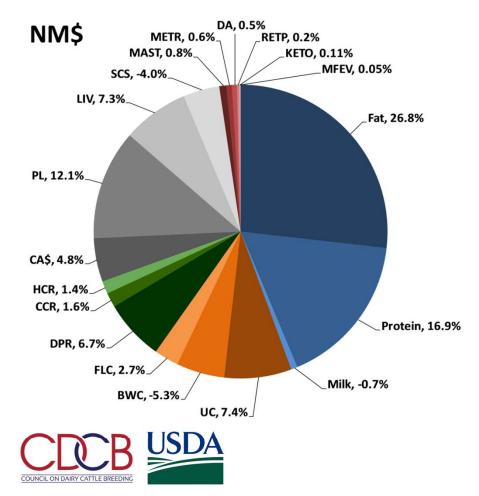

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (32)

AI breedings to genomic bulls

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (33)

Genetic merit of marketed Holstein bulls

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (34)


Genetic-economic index changes across time

	Relative emphasis on traits (%)								
	PD\$	MFP\$	NM\$						
Trait	1971	1976	1994	2000	2003	2006	2014	2017	2018
Milk	52	27	6	5	0	0	-1	-1	-1
Fat	48	46	25	21	22	23	22	24	27
Protein		27	43	36	33	23	20	18	17
PL	•••	•••	20	14	11	17	19	13	12
SCS			-6	-9	-9	-9	-7	-7	-4
BWC	•••	•••	•••	-4	-3	-4	-5	-6	-5
UC				7	7	6	8	7	7
FLC				4	4	3	3	3	3
DPR					7	9	7	7	7
CA\$						6	5	5	5
HCR							1	1	1
CCR							2	2	2
LIV								7	7
Health\$	•••	•••	•••	•••	•••	•••	•••	•••	2

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (35)

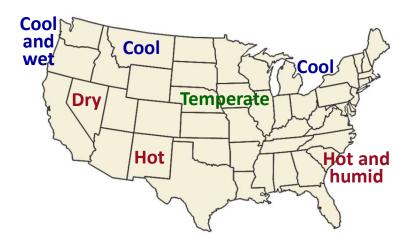
Relative weighting in 2018 net merit (NM\$)

- UC Udder composite
- BWC Body weight composite
- FLC Feet-legs composite
- DPR Daughter pregnancy rate
- CCR Cow conception rate
- HCR Heifer conception rate
- CA\$ Calving ability (calving ease & stillbirth rate)
- PL Productive life
- LIV Livability
- SCS Somatic cell score
- **MAST** Mastitis
- **METR** Metritis
- DA Displaced abomasum
- **RETP** Retained placenta
- **KETO** Ketosis
- MFEV Milk fever

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (36)

What we expect in the future

- Increasing number of cows genotyped
- Falling cost per SNP genotyped
- Increased accuracy of genomic evaluations from more informative SNPs
- Genomic evaluations on more traits to predict economic merit more accurately
- Increased use of genomics in mating programs


Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (37)

Why is the U.S. a leader?

- Population size
- Selection intensity
- Focus on dairy breeds
- Diverse environments
- Competitive Al industry
- Independent evaluations

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (38)

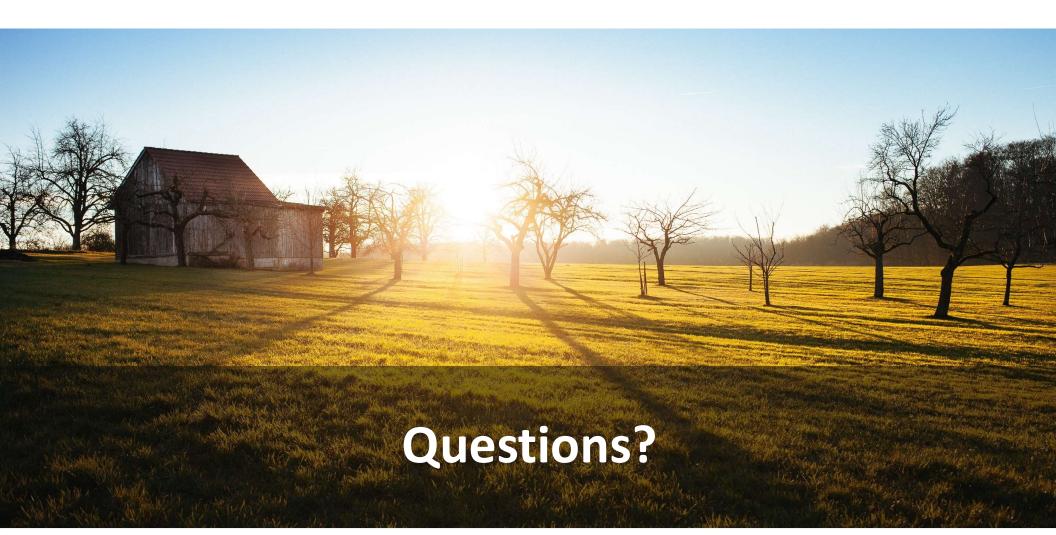
Benefits of genomics

- Determine genetic merit of animals at a young age
- Increase selection intensity
- Increase accuracy of selection
- Reduce generation interval
- Increase rate of genetic gain
- Identify genetic defects and reduce their frequency
- Parentage discovery
- Herd management
 - Cull low-end replacement animals earlier
 - Breed lower merit animals to beef bulls

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (39)

Summary

- U.S. genetics recognized and used around the world as "the source" in many breeding programs
- Largest genetic base and high selection intensity produces elite bulls and cows
- Genomics revolutionized animal breeding and brought excitement to dairy genetics
- International collaboration important to program success


Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (40)

Acknowledgments & disclaimers

- John Cole is funded through USDA-ARS project 8042-31000-002-00, "Improving dairy animals by increasing accuracy of genomic prediction, evaluating new traits, and redefining selection goals"
- Mention of trade names or commercial products in this presentation is solely for the purpose of providing specific information and does not imply recommendation or endorsement by CDCB or USDA; CDCB and USDA are equal opportunity providers and employers

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (41)

Wiggans – AABP Genomics Webinar – Jan. 16, 2019 (42)