Development, implementation, and future perspectives of health evaluations in the U.S.

K.L. Parker Gaddis¹, P.M. VanRaden², J.B. Cole², E. Niccolazi¹, and J.W. Dürr¹

¹ Council on Dairy Cattle Breeding, Bowie, MD

² Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD

DEVELOPMENT

2

Changes in emphasis over time

1971 PD\$

COUNCIL ON DAIRY CATTLE BREEDING

2018 NM\$

[™] Milk Fat Protein PL SCS 🕷 HTH\$ DPR CA\$ **HCR** CCR **BWC** UC **FLC**

Since the 1980s

- Evidence that selection for health events could be successful
 - E.g., Scandinavian countries direct recording of health events
- Within U.S. calls for a unified system of reporting health events
 - Possibility for improvement through selection
 - Since 1994 Indirect selection through traits SCS and PL, and later LIV

 Introduction of genomics in 2009 – feasible to select for lowly heritable traits that are expensive and/or difficult to measure

U.S. hurdles

- No mandated reporting system
- Need a single repository to collect and store data
- No unified way to record health events
 - Standardization critical

(https://www.thesun.co.uk/news/3420620/showjumpingcow-jumps-hurdles-pictures/)

Data flow

- Cooperation from the Dairy Records **Processing Centers**
 - Flow through DHI system
- Necessary standardization performed by DRPCs •

Format 6

Includes 20 health event codes + 4 management codes

				Health Event Segments (up to 20 segments)			
Health Event Segment Block (# 1)							
4	AAAA	СН	170	Health event code			
8	XXXX	СН		Health event date (YYYYMMDD)			
1	Α	СН		Health event date type (A = actual; $E = estimated$)			
6	AAAA	СН		Health event detail			
19	AAAA	CH		Health event segment block # 2			
19	AAAA	CH		Health event segment block # 3			
19	AAAA	CH		Health event segment block # 4			
	8 1 6 19 19	8 XXXX 1 A 6 AAAA 19 AAAA 19 AAAA	4 AAAA CH 8 XXXX CH 1 A CH 6 AAAA CH 19 AAAA CH 19 AAAA CH	4 AAAA CH 170 8 XXXX CH			

INPLEMENTATION

9

Health trait implementation

- April 2018: Official genomic evaluations for 6 direct health traits from CDCB for Holstein
 - Milk fever (MFEV)
 - Displaced abomasum (DA)
 - Ketosis (KETO)
 - Mastitis (MAST)
 - Metritis (METR)

- August 2018: Inclusion of health trait sub-index (HTH\$) in net merit indices (NM\$, FM\$, CM\$, GM\$)
 - 2.3% total emphasis within NM\$

10

Data processing

- Two levels of editing at CDCB
 - <u>General edits</u> date checks, parent checks, herd checks, etc.
 - <u>Constraints to be included for genetic evaluation</u> parities
 1 to 5, Holstein (currently), minimum/maximum incidence

restrictions, etc.

Phenotypes used for evaluation

	Number of Records	Number of Cows		
Milk fever	1.2 M	0.7 M		
Displaced abomasum	1.9 M	1.1 M		
Ketosis	1.4 M	0.8 M		
Mastitis	2.4 M	1.4 M		
Metritis	2.0 M	1.1 M		
Retained placenta	2.2 M	1.3 M		

*As of April 2019 evaluation

Evaluation models

- Single-trait linear animal repeatability models
- Additional details available

	Heritability (observed)
Milk fever	0.6%
Displaced abomasum	1.1%
Ketosis	1.2%
Mastitis	3.1%
Metritis	1.4%
Retained placenta	1.0%

https://www.uscdcb.com/

CDCB Health Traits

As of August 2018, Net Merit \$ includes the six health traits launched in April.

Cost considerations

- Direct costs of each event used in development of HTH\$
 - Considers veterinary and treatr
 - Excludes costs that are accounted for by other traits in NM\$ (e.g., declines in fertility, decreased production)
- Yield traits designated as "sick" test days are adjusted
 - These test days are accounted for with an additional adjustment (in

parentheses above)

	Event	Direct cost
	MFEV	\$34 (38 – 4)
	DA	\$197 (178 + 1
	KETO	\$28 (28 + 0)
	MAST	\$75 (72 + 3)
	METR	\$112 (105 + 7
ment costs	RETP	\$68 (64 + 4)

Variance adjustments

- Linear model used with binary trait
- Phenotypic pre-adjustments applied to all health events
 - Phenotypes are adjusted based on calving year, parity, and heritability of the trait prior to genetic evaluation
- Similar to methodology described by Wiggans and VanRaden, 1992 and the adjustment applied to livability
- Implemented April 2019

Variance adjustments

- Most health traits had PTA correlations ranging from 0.92 to 0.98 for bulls with > 70% reliability born since 2000
 - Exception milk fever
- For all traits first lactation trends agreed with the new trends more closely than with the old trends.

Interbull validation

- trait group
- Validation of genetic trends •
- Only see on average a 1 point increase in reliability
- also have genotypes available in the US

MAST now sent along with SCS PTA to Interbull for Udder Health

Minimal foreign bulls from countries supplying MAST directly that

FUTURE PERSPECTIVES

Future developments

- Health evaluations for Jersey
 - Genomic evaluations for the 6 health traits

on average

Reliability approximately 10-15 points lower than Holstein

See L. Jensen's talk – ADSA Tuesday 10:30 AM Room

Future developments

- Multiple trait evaluations
 - Approximate genetic correlations
 - Mastitis & SCS
 - Groups of traits metabolic, reproductive?

	Protein	PL	LIV	SCS	DPR	CCR	HCR
MFEV	-0.21*	-0.10	0.08	-0.02	-0.07	-0.08	-0.01
DA	0.15	0.40*	0.41*	-0.14	0.30*	0.30*	0.12
KETO	0.20*	0.39*	0.31*	-0.25*	0.41*	0.39*	0.19*
MAST	0.06	0.52*	0.39*	-0.68*	0.32*	0.31*	0.10*
METR	0.27*	0.47*	0.33*	-0.21*	0.44*	0.45*	0.29*
RETP	0.02	0.21*	0.16*	-0.13	0.19*	0.19*	0.19*

Potential health traits

- - Lameness or locomotion
 - conformation, metabolic, infection
 - How to differentiate between these?
 - Johne's

Continued investigation on economically important health traits

Events represent a variety of reasons for lameness – injury,

(https://vetextension.wsu.edu/researchprojects/lameness/)

Potential health traits

- Calf health & calf termination
 - Dairy calf death losses estimated at \$327.3 million in 2015 (Lombard et al., 2019)
 - Possible to include calf/heifer health records with Format 6 •
 - Lombard et al., 2019 proposed death loss categorization scheme •
 - Pursuing Data Quality group of CDCB working with this scheme and termination reasons already collected by CDCB
 - Goal: expand termination codes to include calves/heifers

(https://hoards.com)

Maintenance of data pipelines

- Expand current pipelines to capture additional informationMonitor data being submitted, accepted, and rejected
- Two-way communication with data providers
- Updates to standardization "dictionaries" as needed

/ What We Can Do For You / Service Documentation / Error Documentation

Number of Health Event Segments Errors

Code Description

- Number of health event segments does not agree with length of 9Ab record. Length of record corrected
- Cow already has 50 health events. New event is ignored. 9Ac

Action Returned Data Change

Reject Event date

Updated 08/22/2007

01/17/2008

Error Codes Complete Error Lists CSV/Excel Tab Separated

- 0 General Record
- 1 Animal Identification
- 2 Sire Identification
- 3 Dam Identification

New functional traits

- Feed efficiency
 - Project funded by Foundation for Food and Agriculture Research (FFAR) and CDCB
 - Institutions include Michigan State University, University of Wisconsin, Iowa State University, University of Florida, and USDA Animal Genomics and Improvement Laboratory
 - Continuing the work of USDA NIFA grant
 - Projected that breeding for more efficient dairy cows could save the U.S. dairy industry \$540 million per year
 - Inclusion of feed efficiency in Net Merit \$

Creation of data pipelines

- New data types
 - E.g., feed intake data, sensor data
 - Different systems at various institutions
 - Protocol needs to be developed to streamline data processing
 - Need for standardization

Evaluation sources

- - Published methodologies •
 - Health \$ (CDCB)
 - Clarifide Plus (Zoetis)
 - Proprietary evaluations / indices
 - TransitionRight index (ABS)
 - Better Life Health index (CRV)
 - Ideal Commercial Cow index (Genex)

Increasing number of similar evaluations from different sources

Differing results

- Traits with limited data + low heritabilities
 - Different populations
 - Different editing
 - Different statistical model
 - Different presentation
 - Different economic assumptions

Handling multiple sources

- Producers have to consider the source of information Critical to not focus selection on only a few traits
- What does the future hold?

Continued progress

- More data available than ever before
 - Make better selection decisions
 - Phenotypes are critical
 - Quality control standards
 - Unbiased science and research
 - Establishment and maintenance of data pipelines

Communication and Cooperation

Acknowledgements

DRPCs, DRMS Dairy producers

CDCB

AGIL

Thank You!

