Genetic dissection of dairy cow feed efficiency

Francisco Peñagaricano
UNIVERSITY of
FLORIDA

What is the importance of feed efficiency?

- feed represents more than 50% of the total production costs
- benefits of improving feed efficiency:

o increase farm profitability

o reduce the environmental impact of dairy farming

(less land needed, reduced greenhouse gas emissions)

What is the importance of genetic selection?

Cow birth year

What is the importance of genetic selection?

Cow birth year

What is the importance of having genetic tools?

Cow birth year

Genetic variation of feed efficiency

Table 2. Estimated variance components and heritability for feed efficiency and its component traits

Trait^{1}	Genetic variance	Residual variance	Heritability
MILKE MBW DMI RFI DMI MILKE,MBW	$\begin{array}{c} 2.69 \pm 0.25 \\ 26.42 \pm 1.64 \\ 1.08 \pm 0.10 \\ 0.40 \pm 0.05 \\ 0.38 \pm 0.05 \end{array}$	$\begin{array}{r} 9.50 \pm 0.24 \\ 31.98 \pm 1.03 \\ 3.52 \pm 0.09 \\ 2.09 \pm 0.05 \\ 2.09 \pm 0.05 \end{array}$	$\begin{array}{c} 0.22 \pm 0.02 \\ 0.45 \pm 0.02 \\ 0.23 \pm 0.02 \\ 0.16 \pm 0.02 \\ 0.15 \pm 0.02 \end{array}$

¹MILKE = milk energy (Mcal); MBW = metabolic BW (kg^{0.75}); DMI = dry matter intake (kg); RFI = residual feed intake (kg); DMI|MILKE, MBW = DMI conditional on milk energy and metabolic BW (kg/Mcal, kg^{0.75}).

Lu et al. (2018) JDS 101(4): 3140-3154

Heritability (h^2) estimates

	PTA trait													
PTA trait	Milk	Fat	Protein	PL	scs	BWC	Udder	Feet/legs	DPR	CA\$	HCR	CCR	LIV	нтн\$
Milk	0.20 ¹	0.43	0.83	0.10	0.02	-0.12	-0.10	-0.02	-0.23	0.19	-0.03	-0.16	0.03	0.03
Fat	0.69	0.20	0.59	0.15	-0.09	-0.05	-0.07	0.01	-0.15	0.13	0.03	-0.10	0.06	0.08
Protein	0.90	0.75	0.20	0.13	0.04	-0.09	-0.14	-0.01	-0.18	0.22	-0.07	-0.15	0.05	0.04
PL	0.15	0.17	0.16	0.08	-0.45	-0.10	0.18	0.14	0.64	0.40	0.32	0.62	0.70	0.56
SCS	-0.10	-0.10	-0.10	-0.40	0.12	-0.10	-0.23	-0.15	-0.27	-0.14	-0.12	-0.25	-0.25	-0.44
BWC	0.06	0.05	0.05	-0.20	-0.11	0.40	0.27	0.38	-0.052	-0.07	-0.01	-0.01	-0.14	-0.26
Udder	-0.02	-0.05	-0.06	0.15	-0.30	0.45	0.27	0.45	0.09	0.10	0.03	0.04	0.08	-0.01
Feet/legs	-0.14	-0.11	-0.18	0.08	-0.02	0.35	0.40	0.15	0.03	-0.01	-0.01	-0.04	0.06	0.02
DPR	-0.10	-0.10	-0.10	0.20	-0.05	0.00	0.00	0.00	0.04	0.41	0.87	0.35	0.43	0.42
CA\$	0.02	0.02	0.02	0.20	-0.03	-0.10	0.00	-0.02	0.09	0.07	0.16	0.34	0.36	0.33
HCR	-0.05	-0.05	-0.05	0.10	-0.04	-0.02	-0.05	-0.05	0.10	0.16	0.01	0.54	0.22	0.18
CCR	-0.10	-0.10	-0.10	0.40	-0.20	-0.10	0.03	-0.04	0.70	0.20	0.45	0.02	0.43	0.36
LIV	0.11	0.13	0.12	0.70	-0.40	-0.20	0.10	0.05	0.40	0.35	0.20	0.15	0.01	0.55
HTH\$	0.02	0.04	0.02	0.28	-0.22	-0.13	0.00	0.01	0.21	0.17	0.09	0.18	0.28	0.01
¹ Holstein heritabilities in orange on diagonal; heritabilities for other breeds are the same except for BWC (0.35), udder (0.20), and Jersey and Brown Swiss yield traits (0.23).														

Why some cows are more efficient than others?

(some cows need less feed than others of similar body weight and milk production)

- they digest feed better
- they spend less energy on unproductive activities
- they have a more efficient metabolism

Feed efficiency: deciphering the genetic basis

open the black box:

identify genetic variants, candidate genes and biological pathways

Why we want to decipher the genetic basis?

- □ to better understand the biology of this complex phenotype
- □ to generate information that can lead to the development of new nutritional therapies
- □ to develop novel genomic strategies for improving feed efficiency via selective breeding

How do we decipher the genetic basis?

phenotypic variation

genome-wide SNP information

Residual Feed Intake: genomic scan (I)

5k Holstein cows (US + Canada + UK + the Netherlands) / 57k SNPs

1-Mb SNP-windows

Hardie et al. (2017) JDS 100(11): 9061-9075

Milk production: genomic scan

Chromosome

Residual Feed Intake: genomic scan (II)

• 4k Holstein cows (9 US research herds) / 278k SNPs

5 SNP-windows

Residual Feed Intake: genomic scan (III)

4k Holstein cows (9 US research herds) / 58k SNPs

Chromosome

Residual Feed Intake: genomic scan (III)

• 4k Holstein cows (9 US research herds) / 58k SNPs

Whole Genome Association Analysis

- genome-wide association studies are valuable tools
- they focus on genetic markers with the strongest evidence of association
- these significant markers explain a small component of the genetic variance

Pathway Analysis

- test the association of a set of functionally related genes
- multiple contributing factors are considered simultaneously
- opportunity to identify mechanisms and pathways underlying complex phenotypes

Residual Feed Intake: pathway analysis

Relevant pathways:

- Biosynthesis of amino acids
- Metabolism of proteins
- Digestion of carbohydrates
- Skeletal muscle development
- Immunity
- Rumen bacteria activity
- Mitochondrial electron transport

Mitochondrial function

Beef cattle: low RFI vs high RFI

- o greater mitochondrial density
- o greater mitochondrial function
- o greater antioxidant capacity
- o lower oxidative stress

Genomic selection: the latest revolution

JOIN THE REVOLUTION

the use of genetic markers across the genome to predict breeding values

allows to select animals at an early age

Genomics and feed efficiency

feed intake, body weight, milk energy output

Genomic prediction

predict genomic PTAs for the **entire population**, including young selection candidates

Genomic prediction

Table 4. Estimated prediction accuracies for residual feed intake (RFI), DMI, net energy in milk (MilkE), and metabolic body weight (MBW)¹

NLD								SAC		NAM					
Across			Interaction		Across			Interaction		Across			Interaction		
Trait	With SAC	With NAM	Within	With SAC	With NAM	With NLD	With NAM	Within	With NLD	With NAM	With NLD	With SAC	Within	With NLD	With SAC
RFI (kg/d) DMI (kg/d) MilkE (Mcal/d) MBW (kg ^{0.75})	$0.27 \\ 0.35 \\ 0.20 \\ 0.31$	$0.24 \\ 0.31 \\ 0.22 \\ 0.33$	$0.29 \\ 0.32 \\ 0.18 \\ 0.29$	$0.26 \\ 0.31 \\ 0.17 \\ 0.30$	$0.29 \\ 0.32 \\ 0.21 \\ 0.37$	$0.17 \\ 0.52 \\ 0.61 \\ 0.41$	$0.12 \\ 0.52 \\ 0.63 \\ 0.43$	$0.14 \\ 0.51 \\ 0.62 \\ 0.39$	$0.11 \\ 0.52 \\ 0.63 \\ 0.44$	$0.13 \\ 0.54 \\ 0.60 \\ 0.44$	$0.15 \\ 0.23 \\ 0.18 \\ 0.38$	$0.15 \\ 0.23 \\ 0.20 \\ 0.37$	$0.18 \\ 0.23 \\ 0.19 \\ 0.40$	$0.14 \\ 0.24 \\ 0.19 \\ 0.44$	$0.15 \\ 0.23 \\ 0.19 \\ 0.41$

¹Accuracies were measured as the correlation between genomic predicted breeding values and adjusted phenotypes. Environments included North America (NAM), the Netherlands (NLD), and Scotland (SAC). Models were across-environment, within-environment, and interaction model. The average SD of correlations across 10 training-testing partitions were about 0.06, 0.08, and 0.03 for NLD, SAC, and NAM, respectively.

Distribution of GEBV for RFI

GEBVs calculated for 16k bulls using a **reference population** of 3.5k cows

Chen Yao and Kent Weigel

UF FLORIDA

Take home messages

- feed efficiency is an economically relevant trait
- residual feed intake is a heritable trait ($h^2 \approx 15\%$)
- genetic selection can effectively improve dairy feed efficiency
- residual feed intake is highly polygenic, many genes with small effects
- some relevant biological mechanisms:

metabolism of proteins and sugars, rumen bacteria activity, mitochondrial function

- genomic predictive correlations around 20%
- future: more feed intake records, more reliable genomic predictions

Thanks for your attention!

Contact Information: Phone: +1 (352) 294-6988 E-mail: fpenagaricano@ufl.edu Website: fpenagaricano-lab.org

