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Residual feed intake (RFI)

• Feed efficiency is an important trait for dairy cattle breeding and management 
because feed costs comprise a large portion of  various costs associated with dairy 
production.

• Feed efficiency is defined either as a ratio trait or as a regression (residual) trait 
(Berry and Crowley, 2013). In the past decades, residual feed intake (RFI) has 
become increasingly popular as a measure of  net feed efficiency.

• RFI was initially proposed by Koch et al. (1963) as the residuals from the regression 
of  feed intake on various energy sinks. 

• In essence, RFI represents a resource allocation theory, from which animal deviants 
can be identified, these being animals that require more or less feed than predicted 
(Herd, 2009).



Statistical models for evaluating RFI

 Single-trait analysis
o S1: Two-stage linear regression

o S2: One-step linear regression

Multiple-trait analysis
o M1: Multiple-trait, mixed-effects models (MT)

o M2: Recursive structural coefficient models (RSEM)



Single-trait, two-stage linear regression
 Stage #1

o A linear regression fits dry matter intake (DMI) as a linear function of  energy sink traits, 
e.g., metabolic body weight (MBW), energy-corrected milk (ECM) or milk net energy 
(MILKNE), and changes in body weight. The residual is taken to be the RFI phenotype.

𝒚𝒚1 = ∑𝑗𝑗=2𝑘𝑘 𝑏𝑏1𝑘𝑘𝒚𝒚𝑘𝑘 + 𝒓𝒓1

 Stage #2
o The RFI phenotype is fitted by a mixed-effects model to estimate the genetic values and 

relevant genetic parameters.

𝒓𝒓1 = 𝑿𝑿1𝜷𝜷1 + 𝒁𝒁1𝒂𝒂1 + 𝒆𝒆1
where:  𝒂𝒂1~𝑁𝑁 0,𝑨𝑨𝜎𝜎𝑎𝑎2



Single-trait, one-step linear regression

 Combining these two modeling stages leads to a one-step approach without the 
need to estimate the residuals as the RFI phenotypes (e.g., Templeman et al., 
2015).

 Fitting phenotypes as regressor variables in a linear regression was criticized 
because Standard regression models assume that regressor variables have been 
measured precisely or observed without error (Lu et al., 2015). In reality, 
however, phenotypes are subject to measurement errors. 

𝒚𝒚1 = �
𝑗𝑗=2

𝑘𝑘
𝑏𝑏1𝑘𝑘𝒚𝒚𝑘𝑘 + 𝑿𝑿1𝜷𝜷1 + 𝒁𝒁1𝒂𝒂1 + 𝒆𝒆1



Multiple-trait, mixed-effects model (Two-stage)
 Fit a multiple-traits, mixed-effects model, and estimate variance-covariance matrices 

(Note that accurately estimating (co)variance components often require a considerably 
large dataset)

𝐆𝐆 =
𝜎𝜎𝑎𝑎1
2 𝑮𝑮1,2:𝑘𝑘

𝑮𝑮1,2:𝑘𝑘 𝑮𝑮2:𝑘𝑘
;   𝐑𝐑 =

𝜎𝜎𝑒𝑒1
2 𝑹𝑹1,2:𝑘𝑘

𝑹𝑹1,2:𝑘𝑘 𝑹𝑹2:𝑘𝑘
; 𝑽𝑽𝑝𝑝 = 𝑽𝑽𝐺𝐺 + 𝑽𝑽𝑅𝑅 =

𝜎𝜎𝑝𝑝1
2 𝑷𝑷1,2:𝑘𝑘

𝑷𝑷1,2:𝑘𝑘 𝑷𝑷2:𝑘𝑘

 Phenotypes or/and genetic values of  RFI are obtained by a follow-up partial linear 
regression

Partial regression coefficients for RFI phenotypes:     𝒃𝒃𝑝𝑝 = 𝑷𝑷1,2:𝑘𝑘 𝑷𝑷2:𝑘𝑘
−1 ; 

Partial regression coefficients for RFI genetic values:  𝒃𝒃𝐺𝐺 = 𝑮𝑮1,2:𝑘𝑘 𝑮𝑮2:𝑘𝑘
−1



Recursive structural equation model
For the i-th individual

𝚲𝚲𝐲𝐲𝑖𝑖 = 𝐗𝐗𝑖𝑖𝜷𝜷 + 𝐙𝐙𝑖𝑖𝐚𝐚 + 𝐞𝐞𝑖𝑖

𝚲𝚲 =

1 −𝜆𝜆12 ⋯ −𝜆𝜆1𝑘𝑘
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1



RSEM: Variance-covariance matrices

𝑮𝑮0 =

𝜎𝜎𝑎𝑎𝑟𝑟
2 0 … 0

0 𝜎𝜎𝑎𝑎2
2 … 𝜎𝜎𝑎𝑎2𝑘𝑘

⋮ ⋮ ⋱ ⋮
0 𝜎𝜎𝑎𝑎2𝑘𝑘 … 𝜎𝜎𝑎𝑎4

2

;

𝑹𝑹0 =

𝜎𝜎𝑒𝑒𝑟𝑟
2 0 … 0

0 𝜎𝜎𝑒𝑒2
2 … 𝜎𝜎𝑒𝑒2𝑘𝑘

⋮ ⋮ ⋱ ⋮
0 𝜎𝜎𝑒𝑒2𝑘𝑘 . . 𝜎𝜎𝑒𝑒𝑘𝑘

2

𝑮𝑮0∗ =

𝜎𝜎𝑎𝑎𝑟𝑟
2 + Δ𝑎𝑎 𝜆𝜆12𝜎𝜎𝑎𝑎2

2 + ∑𝑡𝑡≠𝑟𝑟,2
𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑎𝑎2𝑡𝑡 … 𝜆𝜆1𝑘𝑘𝜎𝜎𝑎𝑎𝑘𝑘

2 + ∑𝑡𝑡≠𝑟𝑟,𝑘𝑘
𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑎𝑎𝑘𝑘𝑡𝑡

𝜆𝜆12𝜎𝜎𝑎𝑎2
2 + ∑𝑡𝑡≠𝑟𝑟,2

𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑎𝑎2𝑡𝑡
⋮

𝜆𝜆1𝑘𝑘𝜎𝜎𝑎𝑎𝑘𝑘
2 + ∑𝑡𝑡≠𝑟𝑟,𝑘𝑘

𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑎𝑎𝑘𝑘𝑡𝑡

𝜎𝜎𝑎𝑎2
2 … 𝜎𝜎𝑎𝑎2𝑘𝑘
⋮ ⋱ ⋮
𝜎𝜎𝑎𝑎2𝑡𝑡 … 𝜎𝜎𝑎𝑎𝑘𝑘

2

where ∆𝑥𝑥= ∑𝑡𝑡′=2
𝑘𝑘 𝜆𝜆1𝑡𝑡𝑡2 𝜎𝜎𝑥𝑥𝑡𝑡′

2 + ∑𝑡𝑡′=2
𝑘𝑘 𝜆𝜆1𝑡𝑡𝑡 ∑𝑡𝑡≠1,𝑡𝑡𝑡

𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑥𝑥𝑡𝑡𝑡𝑡′ , for 𝑥𝑥 = 𝑎𝑎 and e. 

𝑮𝑮0∗= 𝜦𝜦−1𝑮𝑮0𝜦𝜦𝑡−1

𝑅𝑅0∗= 𝜦𝜦−1𝑅𝑅0𝜦𝜦𝑡−1

𝑅𝑅0∗ =

𝜎𝜎𝑒𝑒𝑟𝑟
2 + Δ𝑒𝑒 𝜆𝜆12𝜎𝜎𝑒𝑒2

2 + ∑𝑡𝑡≠𝑟𝑟,2
𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑒𝑒2𝑡𝑡 … 𝜆𝜆1𝑘𝑘𝜎𝜎𝑒𝑒𝑘𝑘

2 + ∑𝑡𝑡≠𝑟𝑟,𝑘𝑘
𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑒𝑒𝑘𝑘𝑡𝑡

𝜆𝜆12𝜎𝜎𝑒𝑒2
2 + ∑𝑡𝑡≠𝑟𝑟,2

𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑒𝑒2𝑡𝑡
⋮

𝜆𝜆1𝑘𝑘𝜎𝜎𝑒𝑒𝑘𝑘
2 + ∑𝑡𝑡≠𝑟𝑟,𝑘𝑘

𝑘𝑘 𝜆𝜆1𝑡𝑡𝜎𝜎𝑒𝑒𝑘𝑘𝑡𝑡

𝜎𝜎𝑒𝑒2
2 … 𝜎𝜎𝑒𝑒2𝑘𝑘
⋮ ⋱ ⋮
𝜎𝜎𝑒𝑒2𝑡𝑡 … 𝜎𝜎𝑒𝑒𝑘𝑘

2

RFI DMI



Conditional posterior distribution: structural coefficients

𝝀𝝀|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒~𝑀𝑀𝑀𝑀𝑁𝑁 𝝁𝝁𝜆𝜆,𝑽𝑽𝜆𝜆

where: 𝑽𝑽𝜆𝜆 = 𝜎𝜎𝑒𝑒1
2 ×

�
𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖22 + 𝜎𝜎𝑒𝑒1

2 𝜏𝜏−2
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⋮

�
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⋯
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𝑖𝑖=1

𝑛𝑛
𝑦𝑦𝑖𝑖𝑘𝑘2 + 𝜎𝜎𝑒𝑒1

2 𝜏𝜏−2
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𝝁𝝁𝜆𝜆 = 𝜎𝜎𝑒𝑒1
−2 × 𝑽𝑽𝜆𝜆 ×

�
𝑖𝑖=1

𝑛𝑛
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2 𝜏𝜏−2𝜆𝜆0

�
𝑖𝑖=1

𝑛𝑛
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⋱

�
𝑖𝑖=1

𝑛𝑛
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The simplified algorithm
• A standard multiple-trait mixed-effects model analysis of  energy sink traits, independent of  

the computed RFI phenotypes. This step can be implemented by Markov chain Monte 
Carlo, or simply by REML.

• Markov chain Monte Carlo sampling for the structural coefficients and model parameters 
for RFI. 

• The variance-covariance components between DMI and energy sinks are based on the 
following relationships: 

𝐆𝐆0∗ = 𝚲𝚲−1𝑮𝑮0𝚲𝚲,−1; 𝐑𝐑0∗ = 𝚲𝚲−1𝐑𝐑0𝚲𝚲,−1

where 𝑮𝑮0 = 𝜎𝜎𝑎𝑎𝑟𝑟
2 𝟎𝟎𝑡

𝟎𝟎 𝐆𝐆−𝑟𝑟
, 𝐑𝐑0 = 𝜎𝜎𝑒𝑒𝑟𝑟

2 𝟎𝟎𝑡

𝟎𝟎 𝐑𝐑−𝑟𝑟
. 



Simulation parameters

𝒂𝒂1
𝒂𝒂2
𝒂𝒂𝑖
𝒂𝒂4

~MVN 𝟎𝟎,𝐆𝐆⊗𝑨𝑨 ;

𝑒𝑒1
𝒆𝒆2
𝒆𝒆𝑖
𝒆𝒆4

~MVN 𝟎𝟎,𝐑𝐑⊗ 𝐈𝐈𝝁𝝁 = 𝟎𝟎;

𝒚𝒚1
𝒚𝒚2
𝒚𝒚𝑖
𝒚𝒚4

= 𝝁𝝁 +

𝒂𝒂1
𝒂𝒂2
𝒂𝒂𝑖
𝒂𝒂4

+ 

𝒆𝒆1
𝒆𝒆2
𝒆𝒆𝑖
𝒆𝒆4

𝐷𝐷𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀
𝐸𝐸𝐶𝐶𝑀𝑀
Δ𝑀𝑀𝑀𝑀

G=
0.399
0.205
0.191
0.012

0.205
0.524
0.033
0.037

0.191
0.033
0.287
−0.005

0.012
0.037
−0.005
0.048

; R=
0.584
0.236
0.311
0.179

0.236
0.534
0.142
0.144

0.311
0.142
0.674
−0.022

0.179
0.144
−0.022

0.96



Structural coefficients/patrial regression

LR = single-trait linear regression;  RSEM = Structural equation model;  MT = multiple-traits, mixed effects model

COVP = partial regression coefficients from the MT model based on phenotypic variance-covariances; 
COVG = partial regression coefficients from the MT model based on genetic variance-covariances.

Energy 
sink

Two-stage LR One-step LR RSEM MT

Mean SD Mean SD Posterior 
mean

Posterior 
SD

COVP COVG COVE

MBW 0.327 0.026 0.313 0.027 0.312 0.027 0.327 0.349 0.300
ECM 0.498 0.027 0.470 0.027 0.469 0.027 0.498 0.629 0.404
dLW 0.127 0.026 0.137 0.025 0.137 0.025 0.127 0.049 0.151



Two-stage LR, one-step LR, and RSEM
• The recursive model was equivalent to single-trait linear regression concerning the 

estimated RFI genetic values, but the recursive model has expanded the analytical 
capability to multiple traits with phenotypic relationships assumed.

𝑦𝑦 = −0.008 + 1.025𝑥𝑥 𝑦𝑦 = −0.001 + 1.120𝑥𝑥



Two-stage LR, one-step LR, and MT

𝑦𝑦 = −0.009 + 1.015𝑥𝑥 𝑦𝑦 = −0.001 + 0.987𝑥𝑥



RSEM vs. MT model
• RSEM captures phenotypic recursive effects whereas the MT model derives the partial 

regression coefficients for RFI genetic values based on genetic variance-covariances only.
• These results were no indication of  which model was more accurate because the true 

RFI genetic values were unknown, and because the simulation results were subject to the 
underlying assumptions, whether it favors one model or the other. 

𝑦𝑦 = −0.001 + 1.127𝑥𝑥



Conclusions

 We proposed a Bayesian structural equation model as a flexible, one-step, direct method for 
the genetic evaluation of  RFI. A simplified algorithm is proposed, which facilitates dealing 
with large datasets in real applications.

 The recursive model was equivalent to single-trait linear regression concerning the 
estimated RFI genetic values, but the recursive model has expanded the analytical capability 
to multiple traits with phenotypic relationships assumed.

 The recursive model extends naturally to deal with heterogenous recursiveness that varied 
with subpopulations or varied genetic and residual relationships within the same population. 
Extending the recursive model to genomic prediction is straightforward too, which can be 
accomplished by replacing the additive genetic relationship matrix with a genomic 
relationship matrix. 
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